An active-library based investigation into the performance optimisation of linear algebra and the finite element method
نویسنده
چکیده
In this thesis, I explore an approach called “active libraries”. These are libraries that take part in their own optimisation, enabling both high-performance code and the presentation of intuitive abstractions. I investigate the use of active libraries in two domains. Firstly, dense and sparse linear algebra, particularly, the solution of linear systems of equations. Secondly, the specification and solution of finite element problems. Extending my earlier (MEng) thesis work, I describe the modifications to my linear algebra library “Desola” required to perform sparse-matrix code generation. I show that optimisations easily applied in the dense case using code-transformation must be applied at a higher level of abstraction in the sparse case. I present performance results for sparse linear system solvers generated using Desola and compare against an implementation using the Intel Math Kernel Library. I also present improved dense linear-algebra performance results. Next, I explore the active-library approach by developing a finite element library that captures runtime representations of basis functions, variational forms and sequences of operations between discretised operators and fields. Using captured representations of variational forms and basis functions, I demonstrate optimisations to cell-local integral assembly that this approach enables, and compare against the state of the art. As part of my work on optimising local assembly, I extend the work of Hosangadi et al. on common sub-expression elimination and factorisation of polynomials. I improve the weight function presented by Hosangadi et al., increasing the number of factorisations found. I present an implementation of an optimised branch-and-bound algorithm inspired by reformulating the original matrix-covering problem as a maximal graph biclique search problem. I evaluate the algorithm’s effectiveness on the expressions generated by our finite element solver.
منابع مشابه
An Enhanced Finite Element method for Two Dimensional Linear Viscoelasticity using Complex Fourier Elements
In this paper, the finite element analysis of two-dimensional linear viscoelastic problems is performed using quadrilateral complex Fourier elements and, the results are compared with those obtained by quadrilateral classic Lagrange elements. Complex Fourier shape functions contain a shape parameter which is a constant unknown parameter adopted to enhance approximation’s accuracy. Since the iso...
متن کاملInvestigation into the Curling Intensity of Polyester/Cotton Single Jersey Weft Knitted fabric Using Finite Element Method
Curling of knitted fabrics edges is one of the complicated problems of these structures. Therefore, study and measurement of curling in knitted fabrics is important. In this study, it is tried to model the three-dimensional wale wise curl of the fabric using finite element modelling. In this model the tensions in different parts of a knitted loop due to bending and torsional forces in knitting ...
متن کاملA Super - Element Based on Finite Element Method for Latticed Columns Computational Aspect and Numerical Results
This paper presents a new super-element with twelve degrees of freedom for latticed columns. This elements is developed such that it behaves, with an acceptable approximation, in the same manner as a reference model does. The reference model is constructed by using many Solid elements. The cross section area, moments of inertia, shear coefficient and torsoinal rigidity of the developed new elem...
متن کاملAn Investigation into the Performance of Excavation with Inclined Struts Connected to Adjacent Buildings
One practical excavation support system is the inclined struts connected to adjacent buildings. This method is very common in small excavations, because of simplicity and minimum cost, when soil is cohesive and depth of excavation is less than stability depth (Hcr) but adjacent structures is at risk of damage due to weakness, old age or lack of proper skeleton frame. Although this method ...
متن کاملInvestigation of Nonlinear Behavior of Composite Bracing Structures with Concrete Columns and Steel Beams (RCS) Applying Finite Element Method
The composite structural system (RCS) is a new type of moment frame, which is including a combination of concrete columns (RC) and steel beams (S). These structural systems have the advantages of both concrete and steel frames [1]. In previous research on composite structures, there are some studies regarding RCS composite conections, but there is no investigation about seismic resisting system...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011